
Honor Among Thieves — Collusion in Multi-Unit Auctions

Yoram Bachrach
Microsoft Research
Cambridge UK

yobach@microsoft.com

ABSTRACT
We consider collusion in multi-unit auctions where the allo-
cation and payments are determined using the VCG mecha-
nism. We show how collusion can increase the utility of the
colluders, characterize the optimal collusion and show it can
easily be computed in polynomial time. We then analyze
the colluders’ coalition from a cooperative game theoretic
perspective. We show that the collusion game is a convex
game, so it always has a non-empty core, which contains
the Shapley value. We show how to find core imputations
and compute the Shapley value, and thus show that in this
setting the colluders can always share the gain from their
manipulation in a stable and fair way. This shows that this
domain is extremely vulnerable to collusion.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Collusion, Cooperative Game Theory, Bid Rigging, Shapley
Value, Core, Weber Set

1. INTRODUCTION
Collusion is an agreement between two or more agents to

limit competition by manipulating or defrauding in order to
obtain an unfair advantage [26]. Such manipulations include
agreements to divide the market, set prices or limit produc-
tion or bids. For example, in oligopoly where there are few
firms producing a certain good, the decision of a few firms
to limit production can significantly affect the market as a
whole. Cartels are a special case of explicit collusion, where
firms coordinate prices. Collusion which is not overt is called
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tacit collusion. Certain types of collusion are illegal in many
countries, due to competition law. However, many types of
tacit collusion are hard to detect. This paper studies one
form of collusion called bid rigging, where participants in
an auction change their bids in an attempt to lower prices.
Specifically, we consider the domain of multi-unit auctions
under the Vickrey-Clarke-Groves (VCG) mechanism 1.

In a multi-unit domain there are multiple identical items
to be allocated. Each agent thus only cares about the num-
ber of items she receives. We assume free disposal, so agents
always value obtaining more items at least as much as ob-
taining less items. Agents can thus express their preferences
as a valuation function mapping the number of items they
obtain to their valuation for this quantity of items.

Given the above valuation functions, a central mechanism
can easily allocate the items in a way that maximizes social
welfare. The center can ask agents to specify the maximal
amount they would be willing to pay to obtain various quan-
tities of items. These specifications are the agents’ bids.

One major problem that plagues such domains is the fact
that the valuation functions are private information of the
agents. Agents may bid strategically, by misreporting their
valuation functions in order to achieve a better outcome for
themselves. The VCG payment scheme is the canonical
method for incentivizing the agents to bid truthfully (i.e.
reveal their true valuation function).

Although VCG has many desirable properties, it is known
to be susceptible to collusion. Although any single agent
is incentivised to truthfully reveal her valuation function,
several agents may agree to misreport their valuations in a
coordinated way, and split the gains from this manipulation.

In this paper we show how agents can collude in VCG
multi-unit auctions. We provide a simple polynomial algo-
rithm for finding the optimal way to collude, given a specific
coalition of colluders. We then analyze how the colluders
can split the gains from such a manipulation using coopera-
tive game theory, by modeling the situation as a coalitional
game we call the collusion game. We show that this game
is a convex game, so it has a non-empty core that contains
the Shapley value. This means the coalition of colluders can
form stable agreements, in a way that guarantees no bick-
ering among the colluders. In fact, the colluders can even
split the gains in a fair manner, based on the contribution
of each colluder to the coalition. We also provide algorithms
to compute these colluder utility distributions. These dis-
turbing results indicate that VCG multi-unit domains are

1See Section 5 and [21] for more information regarding the
origins and properties of the VCG mechanism.
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extremely vulnerable to collusion.
The paper proceeds as follows. Section 2 contains some

preliminary definitions and notation. Section 3 discusses
possible ways of collusion in multi-unit VCG auctions. In
Section 4 we analyze the colluders coalition using tools from
cooperative game theory. Section 5 contains references for
important related work. We conclude in Section 6.

2. PRELIMINARIES
We consider collusion in multi-unit auction under the VCG

mechanism. We begin with a brief review of VCG.
We have a set N of n agents, {1, 2, . . . , }. The mechanism

needs to choose one of a set of possible alternatives K. Each
agent reports a type θi ∈ Θi, representing the agent’s pref-
erences over the different alternatives in K. Each agent has
a different valuation of the mechanism’s chosen alternative
k ∈ K, vi(k, θi). The mechanism chooses the outcome ac-
cording to a choice rule k : Θ1× ...×Θn → K. Each agent is
also required to make a payment pi to the mechanism. The
mechanism chooses the payment of each agent according to
a payment rule ti : Θ1 × ... × Θn → R. If the agents have
quasi-linear utility functions, then the agents have utility
ui(k, pi, θi) = vi(k, θi) − pi. An agent might not report her
true type, but has to always choose a type to report to the
mechanism. Thus, agent i reports a type θ′

i = si(θi), accord-
ing to its own strategy si. In Groves mechanisms, the mech-
anism’s choice rule given the reported types θ′ = (θ′

1, ..., θ
′
n)

maximizes the sum of the agents’ utilities, according to their
reported types, as seen in Equation 1.

Equation 1 Groves Allocation

k∗(θ′) = arg max
k∈K

∑

i

vi(k, θ′
i) (1)

The payment rule in Groves mechanisms is given in Equa-
tion 2. where hi : Θ−i → R may be any function that only

Equation 2 Groves Payments

ti(θ
′) = hi(θ

′
−i) −

∑

j �=i

vj(k
∗, θ′

j) (2)

depends on the reported types of agents other than i. A
special case of Groves mechanisms is that of the VCG mech-
anism, given in Equation 3.

Equation 3 VCG Payments

hi(θ
′
−i) =

∑

j �=i

vj(k
∗
−i(θ

′
−i), θ

′
j) (3)

Our analysis of collusion is based on coalitional game the-
ory. A transferable utility coalitional game is composed of a
set of n agents, N , and a characteristic function mapping any
subset (coalition) of the agents to a real value v : 2N → R,
indicating the total utility these agents achieve together. We
denote the set of all the agents except i as N−i = N \{i}. A
coalitional game is increasing if for all coalitions C′ ⊂ C we

have v(C′) ≤ v(C), and is super-additive when for all dis-
joint coalitions A, B ⊂ N we have v(A) + v(B) ≤ v(A∪B).
In super-additive games, it is always worthwhile for two sub-
coalitions to merge, so eventually the grand coalition con-
taining all the agents will form.

The characteristic function only defines the gains a coali-
tion can achieve, but does not define how these gains are
distributed among the agents who formed the coalition. An
imputation (p1, . . . , pn) is a division of the gains of the grand
coalition among the agents, where pi ∈ R, such that

∑n
i=1 pi =

v(N). We call pi the payoff of agent i, and denote the payoff
of a coalition C as p(C) =

∑
i∈C pi. Obviously, a key issue

is choosing the appropriate imputation for the game. Coop-
erative Game theory offers several answers to this question.

A basic requirement for a good imputation is individual
rationality, which states that for any agent i ∈ N , we have
that pi ≥ v({i})—otherwise, some agent is incentivized to
work alone. Similarly, we say a coalition B blocks the payoff
vector (p1, . . . , pn) if p(B) < v(B), since the members of B
can split from the original coalition, derive the gains of v(B)
in the game, give each member i ∈ B its previous gains pi—
and still some utility remains, so each member can get more
utility. If a blocked payoff vector is chosen, the coalition is
somewhat unstable. The most prominent solution concept
focusing on such stability is that of the core [13].

Definition 1. The core of a coalitional game is the set
of all imputations (p1, . . . , pn) that are not blocked by any
coalition, so that for any coalition C, we have the following
equation: p(C) ≥ v(C).

Another solution concept is the Shapley value [23] which
defines a single value division. The Shapley value focuses
on fairness, rather than stability. The Shapley value fulfills
several important fairness axioms [23, 29] and has been used
to fairly share gains or costs. The Shapley value of an agent
depends on its marginal contribution to possible coalition
permutations. We denote by π a permutation (ordering) of
the agents, and by Π the set of all possible such permuta-
tions. Given permutation π ∈ Π = (i1, . . . , in), the marginal
worth vector mπ[v] ∈ Rn is defined as mπ

i1 = v({i1}) and for
k > 1 as mπ

ik
[v] = v({i1, i2, . . . , ik}) − v({i1, i2, . . . , ik−1}).

The convex hull of all the marginal vectors is called the We-
ber Set. Weber showed [28] that the Weber set of any game
contains its core. The Shapley value is the centroid of the
marginal vectors.

Definition 2. The Shapley value is the payoff vector:

φ[v] =
1

n!

∑

π∈Π

mπ[v]

A specific type of super-additive games are convex games.

Definition 3. A game is convex if for any A, B ⊆ I we
have v(A ∪ B) ≥ v(A) + v(B) − v(A ∩ B).

For convex games it is known [24, 15] that the core is
always non-empty, and that the Weber Set is identical to
the core. The Shapley value is a convex combination of the
marginal vectors, so it lies in the Weber Set. Thus, in convex
games, the Shapley value lies in the core.
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3. COLLUSION IN VCG MULTI-UNIT AUC-
TIONS

Consider a multi-unit auction, where the auctioneer offers
to sell t identical items to n bidders, {1, . . . , n}. Each bidder
i has a certain valuation to any number of items she receives,
given by a function vi : N ∪ {0}) → R which maps the
number of units to the utility to that bidder. We denote
the marginal value of the j’th item to agent i as mi(j) =
vi(j)−vi(j−1). A typical assumption that we also adopt is
that of free disposal, so for any k > j we have vi(k) > vi(j).
Another typical assumption is that vi(0) = 0. Throughout
this work we will assume that the marginal utility of items
for each bidder is decreasing, so for any agent i and number
of items j, vi(j + 2) − vi(j + 1) ≤ vi(j + 1) − vi(j). This
assumption is critical in our analysis.

Since all the items are identical, it is possible to define an
allocation of items to agents in terms of the number of items
each user receives. Thus, an allocation is simply vector of
quantities q = (q1, . . . , qn) such that

∑n
i=1 qi = t. Given

an allocation q, we denote the total utility the allocation
q generates as f(q) =

∑n
i=1 vi(qi). It is easy to see that

the total utility can be expressed as the following sum of
marginal utilities: f(q) =

∑n
i=1

∑qi
j=1 mi(j).

3.1 VCG in Multi-Unit Auctions
Given the functions v1, . . . , vn of the bidders, it is possible

to compute the optimal allocation of items to the bidders,
that maximizes f(q). However, the vi functions are typically
private information of the bidders. Typically in such alloca-
tion settings, in order to make sure the bidders truthfully re-
veal their preferences, the Vickrey-Clark-Groves mechanism
is used. As discussed in Section 2, the VCG prices make
truthful revelation the dominant strategy for the agents,
which results in the optimal allocation of the items. Any
mechanism for allocating the items must receive as input the
agents’ valuation functions v1, . . . , vn. A possible represen-
tation for a function is the list of valuations vi(1), . . . , vi(t),
and another equivalent representation is the list of marginal
values of this function mi(1), . . . , mi(t). Since there are only
t items to allocate, there is no need to provide valuations for
more than t items. Before we discuss collusion, we first de-
scribe how the optimal allocation can be computed. We
consider the greedy algorithm that assigns an item to the
agent with the current highest marginal utility for an item.

Algorithm 1 VCG Allocation

1. For i = 1 to n do li ← 1 (Initialize locations)

2. For i = 1 to n do qi ← 0 (Initialize quantities)

3. For j = 1 to t do:

(a) x ← argmaximi(li) (Next highest)

(b) lx ← lx + 1 (Move to next marginal)

(c) qx ← qx + 1 (Assign item)

Proposition 1. The greedy assignment algorithm results
in the optimal assignment, maximizing f(q).

Proof. We note that given an optimal allocation qx for
x items, due to the diminishing marginal utility functions,

assigning an additional item to the highest marginal agent
yields an optimal allocation qx+1 for x+1 items. The optimal
allocation for a single item is assigning it to the agent with
the highest marginal. A simple induction on the number of
assigned items completes the proof.

It is also possible to express the above algorithm in the fol-
lowing way. The algorithm obtains a list of marginal utilities
for each of the agent. It then sorts these lists, from high-
est to lowest, but keeps track of the agent from which the
marginal originated from. It then takes the first t items in
the sorted lists, and assigns items to the agents from which
these marginals originated from.

We now consider a VCG based mechanism for allocating
the t items. Such a mechanism receives the functions vi,
reported by each of the agents, which allows computing the
marginal utility functions mi for the agents. Each agent i
has the marginals list mi = (mi(1), . . . , mi(t)). Many of the
results in this paper rely on manipulation of marginal lists,
so we introduce some notation. Given two marginal lists,
mi = (mi(1), . . . , mi(t)) and mj = (mj(1), . . . , mj(t)) we
denote the concatenated list

(mi, mj) = (mi(1), . . . , mi(t), mj(1), . . . , mj(t))

Typically, we sort the marginal lists from the highest to
lowest. Given a marginal list m, we denote the sorted list
as ms. Given two marginal lists mi, mj , we can concatenate
them and sort the concatenated list to obtain (mi, mj)s.
Since all orderings of the elements in the original lists result
in the same sorted concatenated list, we can simply denote
(mi, mj)s = (mi ∪ mj)s. Given a subset C of agents, we
denote the sorted set of marginals of all the agents as mC

s =
(∪i∈Cmi)s (i.e. the marginal list generated by concatenating
all the marginal lists and sorting the resulting list). We
denote the sorted list or marginals of all the users except
user j as m−j

s = (∪i∈C\{j}mi)s. Slightly abusing notation,
we extend this to coalitions, denoting the sorted marginals
of all the agents that are not in C as m−C

s = (∪i/∈Cmi)s

Observation 1 (Alternative Greedy Algorithm).
An alternative presentation of the greedy algorithm is as fol-
lows. It obtains the marginals list mi for each user i, com-
putes mN , sorts it into to mN

s , and uses the first t marginals.
Thus, if mN

s = (a1, a2, . . . , ant), the social welfare obtained
by the optimal allocation of t items to the users N is

∑t
i=1 ai.

We now compute the VCG payments using Equations 2 and
3. To compute the allocation, the algorithm maintains the
origin agent of each marginal, and assigns a unit to the first
t such origins.

Observation 2 (Computing VCG Prices). Consider
the case where agent i obtained qi items in the optimal allo-
cation for all the agents. First consider the optimal assign-
ment when agent i is not present, as required by Equation 3.
Denote sorted list of marginals for all the users except i as
m−i

s = (b1, b2, . . . b(n−1)t). We note that the optimal alloca-

tion for N\{i} has a social welfare of
∑t

i=1 bi. Now consider
the optimal assignment when agent i is present, as required
by Equation 2. When agent i is present, the algorithm uses
the full marginals list mN

s = (a1, a2, . . . , ant). Since user i
was allocated qi items, the t − qi first items in m−i

s also oc-
cur in the first t items in mN

s , and the next qi items do not
occur in mN

s . We refer to these qi items that do not occur
in the first t items of mN

s as the payment marginals for i.
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The VCG payment for i is the difference between Equation
2 and Equation 3, and is thus simply qi marginals in m−i

s

starting from position t − qi.

Example 1 (VCG prices). Consider m1 = (10, 8, 3),
m2 = (9, 7, 5), m3 = (6, 4, 2), and t = 5. We compute the
VCG payment of agent 1.

In example 1 we have mN
s = (10, 9, 8, 7, 6, 5, 4, 3, 2), and

m−1
s = (9, 7, 6, 5, 4, 2). Thus in the optimal allocation for

N \ {1} the welfare of N \ {1} is 9+7+6+5+4, and in the
optimal allocation for N the welfare of N \ {1} is 9 + 7 + 6.
User 1 obtains q1 = 2 items, so the VCG payment p1 for
her can be computed by considering m−1

s , skipping the first
t − q1 = 5 − 2 = 3 items, and summing the next q1 items,
resulting in a payment of 5 + 4 = 9.

3.2 How to Collude In VCG Multi-Unit Auc-
tions

We begin with an example for collusion in a VCG Multi-
Unit Auctions.

Example 2 (Simple Collusion Scheme). Consider 4
agents, with the following marginals: m1 = (10, 8, 8), m2 =
(9, 1, 1), m3 = (9, 1, 1), m4 = (1, 1, 1), and t = 3. The op-
timal allocation assigns one item to each of agents 1, 2, 3.
Agent 1 gets an item of valuation v1 = 10 and a payment of
p1 = 1, so her utility is u1 = 10 − 1 = 9. Similarly, v2 =
9, p2 = 8, u2 = 9− 8 = 1 and v3 = 9, p3 = 8, u3 = 9− 8 = 1.

Note that the payment agents 2 and 3 make is due to the
second marginal of agent 1, m1(2) = 8, and that the pay-
ment agent 1 makes is due to the second marginal of agent 2,
m2(2) = 1. Assume agents 1, 2, 3 trust each other and know
each other’s marginals, and consider the case where they
collude. They can misreport their marginals the following
way: m′

1 = (10, 0, 0), m′
2(9, 0, 0), m′

3 = (9, 0, 0).
In this case, agent 4 is not a part of the colluders’ coalition,

and truthfully reports her marginals: m′
4 = (1, 1, 1). Note

that under these declarations of the agents, the allocation
does not change, and each of agents 1, 2, 3 get one item.
However, the VCG payments are very different: p′

1 = 1, p′
2 =

1, p′
3 = 1. Thus u′

1 = 10−1 = 9, u′
2 = 9−1 = 8, u′

3 = 9−1 =
8, so agent 1 obtains exactly the same utility as before, and
agents 2, 3 each increase their utility from 1 to 8.

One might claim that since agent 1 did not increase her
utility, she might not be willing to collude. However, agents
2, 3 can compensate agent 1 via a monetary transfer 2. Using
such transfers allow the colluders to cooperate and share the
spoils in various ways.

We denote by q∗i the quantity of items agent i obtains un-
der truthful revelation. In example 2 each colluder keeps her
first q∗i original marginals (for which they obtain items un-
der truthful decelerations) and sets the reminder marginals
to 0. We refer to this as the simple collusion scheme. While
such a manipulation scheme never harms the colluders, we
now show that sometimes a more sophisticated manipula-
tion is required, where both monetary and item transfers
are necessary.

Example 3 (Stronger Collusion Scheme). Consider
m1 = (8, 1, 1, 1), m2 = (9, 1, 1, 1), m3 = (10, 4, 3, 2), where

2VCG relies on such monetary transfers, so obviously we
are already operating in a quasi-linear preferences domain
anyway.

t = 4 and agents C = {1, 2} consider colluding. Under
truthful revelation, agents 1 and 2 get a single item each,
and agent 3 gets two items, and the payments are p1 =
3, p2 = 3, p3 = 2, and thus the colluder coalition C gets
1+1 = 2 items, and pays p(C) = 3+3 = 6. Under the sim-
ple collusion scheme of example 2, the following marginals
can be declared: m′

1 = (8, 0, 0, 0), m′
2(9, 0, 0, 0), m′

3 = m3 =
(10, 4, 3, 2), resulting with the same allocation, with differ-
ent payments p′

1 = 3, p′
2 = 3, p′

3 = 0. Thus, the coalition C
gets 2 items, and pays p′(C) = 3 + 3 = 6, just as before,
so this manipulation does not benefit the colluders (although
the non-colluding member does benefit from it). Now con-
sider the manipulation where the colluders designate agent
1 as a proxy who attempts to obtain the items for all the
colluders. In this case a possible manipulation is declar-
ing the following marginals: m′

1 = (9, 8, 0, 0), m′
2(0, 0, 0, 0),

m′
3 = m3 = (10, 4, 3, 2).

The above manipulation results in agent 1 getting 2 items,
agent 2 getting 0 items and agent 3 getting 2 items. As a
whole, the colluders C = {1, 2} obtains 2 + 0 = 2 items, the
same as 1 + 1 = 2 items it got under truthful revelation.
The payments change: p′

1 = 3+2 = 5, p′
2 = 0, p′

3 = 0, so the
total payment of the colluders is p′(C) = 5 + 0 = 5.

Thus using this manipulation, the coalition obtains ex-
actly the same number of items it gets under truthful reve-
lation, but with lower payments. All the items are allocated
to the proxy agent, who also makes all the payment. How-
ever, it is of course possible for the colluders to reallocate
the items among themselves exactly as under truthful reve-
lation, and since their total payment has dropped, they can
use monetary transfers so that each colluder pays slightly
less than it would under truthful revelation. In this exam-
ple, the coalition of colluders has to make both item transfers
and monetary transfers to increase the utility.

We now explicitly define the above manipulation scheme
by presenting an algorithm to compute it, and then show
that this scheme is indeed optimal for the colluders.

The above manipulation operates by designating a single
agent from the coalition of colluders as the proxy agent,
and making sure the proxy agent obtains the number of
items allocated to the coalition under truthful revelation.
All the marginals of the non-proxy colluders are set to 0.
We denote the colluders C = {1, 2, . . . , r} with marginal lists
m1, . . . , mr, and the non-colluders {r + 1, r + 2, . . . , n} with
marginals mr+1, . . . , mn. Each marginal list mi has t values
mi(1), . . . , mi(t). We continue to denote the list of all the
marginals of an agent subset X as mX and this list sorted
as mX

s . We denote the marginal functions reported by the

colluders as mC ′
= (m′

1, . . . , m
′
r). The following algorithm

computes the manipulation.

Theorem 2 (Optimal Collusion). Algorithm 2 com-
putes the optimal manipulation for the colluder coalition C.

Proof. Denote q∗i the quantity of items a colluder i ∈ C
obtains under truthful revelation. We call the manipulation
scheme of Example 2, where each colluder keeps her first q∗i
original marginals and sets the reminder marginals to 0, the
simple collusion scheme. It is easy to see that the simple col-
lusion scheme never harms the colluders, as they obtain the
same quantities of items for smaller payments. We also note
that Algorithm 2 obtains the same quantity of items for the
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Algorithm 2 Manipulation algorithm

1. Compute qC , the number of items allocated to the
members of C under truthful revelation.

2. Compute mC
s the sorted marginals list for the entire

colluder coalition

3. Designate agent 1 as the proxy agent, and construct
her marginal list as the first qC values of mC

s and 0 for
any marginal beyond that point: for any i ≤ qC have
m1(i) = mC

s (i), and for any i > qC have m1(i) = 0.

4. The marginals for all the non-proxy colluders j ∈
{2, 3, . . . , c} are always 0: mj(l) = 0 for any l.

coalition qC . We now note that the payments under the ma-
nipulation of Algorithm 2 are at most the payments of the
simple collusion scheme. Consider merging two marginal
declarations m′

x = (mx(1), . . . , mx(q∗x), 0, 0, . . .) and m′
y =

(my(1), . . . , my(q∗y), 0, 0, . . .) by sorting the following vec-
tor v = mx(1), . . . , mx(q∗x), my(1), . . . , my(q∗y) into vs and
declaring m′′

x = (vs(1), . . . , vs(q
∗
x + q∗y), 0, . . .) and m′′

y =
(0, 0, . . .). Similarly to Example 1 under m′

x, m′
y, agent x

would have to pay q∗x marginals of m−x
s starting at location

t − q∗x, and y would have to pay q∗y marginals of m−y
s start-

ing at location t − q∗y . Under m′′
x, m′′

y agent y pays nothing,

and x pays q∗x + q∗y marginals of m
−{x,y}
s starting at loca-

tion t−q∗x−q∗y . We note that both options include the same
number of marginals, but the second option includes smaller
marginals, so agents x, y are better off using m′′

x, m′′
y , which

obtains them the same items for a lower cost (as a coalition).
Applying the same argument repeatedly shows that the ma-
nipulation of Algorithm 2 is never worse to the colluders
than the simle collusion scheme.

Note that mC
s indicates the utility the coalition of collud-

ers as a whole obtains from obtaining any quantity qC of
items. This utility for the coalition is obtained when they
allocate the items optimally, according to the greedy alloca-
tion algorithm. A coalition of colluders can either have more
than one agent who declares non-zero marginals, or have a
single agent who declares non-zero marginals. Due to the
above argument, it is always useful to merge two marginals
list to a single agent, so the optimal strategy for the colluders
is to have only one agent who declares non-zero marginals.

Consider a single agent with a marginals list mC
s , entering

a multi-unit VCG auction. Due to the VCG truthfulness,
a dominant strategy for this agent is to truthfully declare
mC

s . Since it is never better for such an agent to “split” its
marginals across several false identities, the optimal strategy
for the colluders is choosing a single proxy agent. However,
the optimal strategy for a single proxy agent is truthful rev-
elation, so the optimal strategy for the colluders is using
a single proxy agent who declares mC

s . Algorithm 2 uses
exactly this manipulation, so it computes the optimal ma-
nipulation, that maximizes the total utility of the colluders∑

i∈C ui. Since running the VCG auction requiers polyno-
mial time, the algorithm runs in polynomial time.

Algorithm 2 provides a polynomial time algorithm to com-
pute a manipulation for the colluders, and Theorem 2 shows
it is an optimal manipulation in terms of the sum of utilities
of the colluders. However, after performing the manipula-

tion, all of the items are owned by the proxy agent, who also
makes all the payments 3. The colluders must distribute
the items and make inter-coalitional monetary payments.
In other words, the collusion allows the coalition to gen-
erate more utility as a group, and the colluders must still
determine how to allocate this utility. The following section
models this situation as a cooperative game, and analyzes
the possible outcomes.

4. THE COLLUSION GAME
Consider a multi-unit auction of t items, with n agents.

We examine a certain subset C ⊆ N , who may decide to
collude. Under truthful revelation the VCG mechanism re-
sults in the allocation qt = (qt

1, . . . , q
t
n) 4, and payments

pt
1, . . . , p

t
n, so the coalition C as a whole obtains a certain

utility:

ut(C) =
∑

i∈C

ui =
∑

i∈C

vi(q
t
i) − pt

i

If the agents in C decide to collude, they can form a coali-
tion and use either the simple manipulation scheme of ex-
ample 2 or the optimal manipulation of Algorithm 2, chang-
ing the allocation to q∗ = (q∗1 , . . . , q∗n) and the payments
to p∗

1, . . . , p
∗
n. The simple manipulation scheme does not

change the allocation, so q∗i = qi for any i, but reduces the
payments to coalition members so p∗

i ≤ pt
i for any i ∈ C. Un-

der the optimal collusion, both the allocation and payments
may change. As seen in section 3.2 and Theorem 2, under
optimal collusion, the total number of items C receives does
not change, i.e qt(C) = q∗(C) where qt(C) =

∑
i∈C qt

i and
q∗(C) =

∑
i∈C q∗i . However, the total payment made by the

coalition drops, i.e. pt(C) ≥ p∗(C) where pt(C) =
∑

i∈C pt
i

and p∗(C) =
∑

i∈C p∗
i . As seen in example 3, after per-

forming the manipulation, the proxy agent distributes the
items similarly to their distribution under the truthful dec-
larations, which results in each colluder i obtaining the same
amout of items they would get under truthfull reports, qt

i .
The proxy agent is the only colluding agent who has a non-
zero payment to the VCG mechanism. The colluders must
then make intra-coalition monetary transfers, which deter-
mine their utility. Thus, the coalition, as a whole, generates
the following utility to its members

u∗(C) =
∑

i∈C

vi(qi) −
∑

i∈C

p∗
i

We now define a coalitional game, based on the total util-
ity a coalition of colluders generates to its members.

Definition 4 (The Collusion Game.). Given a VCG
multi-unit auction of t items for agents N = {1, 2, . . . , n}
with marginal functions m1, . . . , mn, we define the value
v(C) of a coalition C ⊆ N as 5:

v(C) = u∗(C)

3Proxies in collusion are related to false-name proofness. In
domains where a single proxy agent does worse than the
agents it represents, a single agent with marginals similar to
the proxy can do better by splitting up its marginals across
false identities.
4The subscript t stands for truthful.
5In this definition v maps a coalition of colluders to the
utility they achieve, so v denotes the characteristic function,
not to be confused with vi(qi) which is a valuation of a
certain number of items.
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Since the colluders must trust each other to perform the
manipulation, the coalition C might be restricted to only a
certain subset of the agents 6.

Once the coalitional game is defined, we can focus on de-
termining how the total utility generated by the colluders
can be shared amongst the members. We note that mone-
tary transfers allow any distribution of the utility among the
members, regardless of how the items are allocated. Coali-
tional game theory focuses on notions such as fairness and
stability. At a first glance, one might hope that the above
game would have an empty core. If the core is empty, no sta-
ble coalition of colluders can form, and the colluders would
endlessly bicker regarding the monetary transfers.

Unfortunately, we show that the above game always has
a non-empty core, and that a simple polynomial algorithm
allows finding a stable utility distribution (core imputation).
Furthermore, regarding fairness, we show that the Shapley
value, which is widely considered a “fair” solution, is also in
the core. Thus, the colluders can share their gains from the
manipulation in a stable and fair manner 7, making collusion
a very significant problem in such auctions. Our results are
based on showing the above defined game is convex.

Theorem 3 (Convexity of the Collusion Game).
The collusion game defined above is convex, for any multi-
unit auction domain.

Proof. We first note that by definition the collusion game
is increasing (monotone), so if C′ ⊆ C then v(C′) = u∗(C′) ≤
u∗(C) = v(C). For increasing games, it is known that the
game is convex (under Definition 3) iff for any C′ ⊆ C and
any agent j we have v(C′∪{j})−v(C′) ≤ v(C∪{j})−v(C).
This means that a game is convex iff an agent adds to the
utility of a coalition at least as much as it adds to a coalition
contained in it. We show that this condition holds for the
collusion game. The definition of the collusion game defines
the value of a coalition is the utility it achieves under the
optimal manipulation v(C) = u∗(C).

We now show convexity when the collusion game is defined
using the optimal manipulation. We now decompose the
value agent j adds to a coalition C, ΔC

i = v(C∪{j})−v(C).
We denote the amount paid by agent i when the agents in
coalition M optimally collude as pM∗

i . By Definition 4 of
the collusion game above,

ΔC
i =

= v(C ∪ {i}) − v(C)

= u∗(C ∪ {i}) − u∗(C)

=
∑

i∈C∪{j}
vi(qi) −

∑

i∈C∪{j}
p

C∪{j}∗
i −

∑

i∈C

vi(qi) +
∑

i∈C

pC∗
i

= vj(qj) + (
∑

i∈C

pC∗
i −

∑

i∈C∪{j}
p

C∪{j}∗
i )

To show that ΔC′
j ≤ ΔC

j we thus must show that vj(qj)+

(
∑

i∈C′ pC′∗
i −∑i∈C′∪{j} p

C′∪{j}∗
i ) ≤ vj(qj) + (

∑
i∈C pC∗

i −
∑

i∈C∪{j} p
C∪{j}∗
i )

6In the unlikely case where all the agents trust each other
enough to collude, they obtain all the items for a zero cost.
7We mean “fair” for the colluders, of course. Collusion is
very unfair for the auctioneer. Hence the title“Honor among
thieves”.

An equivalent condition that we can show is the following
condition:

(
∑

i∈C′
pC′∗

i −
∑

i∈C′∪{j}
p

C′∪{j}∗
i ) ≤ (

∑

i∈C

pC∗
i −

∑

i∈C∪{j}
p

C∪{j}∗
i )

Yet another equivalent condition is that:
∑

i∈C′∪{j}
p

C′∪{j}∗
i ) −

∑

i∈C′
pC′∗

i ≥
∑

i∈C∪{j}
p

C∪{j}∗
i ) −

∑

i∈C

pC∗
i

In other words, we must show that the payment C′ incurs
for adding j (under the optimal manipulation), is greater
than the payment C incurs for adding j (again, under the
optimal manipulation). Due to theorem 2, under the op-
timal manipulation only the proxy actually has a non-zero
payment.

Thus,
∑

i∈C′ pC′∗
i simply contains the single payment of

the proxy agent pC′∗
x , and other zero payments. The proxy

obtains qt(C′) items, so according to Observation 2 px
C′ is

the sum of qt(C′) elements from m−C′
s starting from position

t−qt(C′). We note the set of all agents N is composed of C′,
D, agent i and the non-colluders H = N \C∪{i} (the honest

agents). The first t − qt(C′) marginals of m−C′
s contain the

first qt(i) elements of mi
s, the first qt(H) elements of mH

s

and the first qt(D) elements of mD
s . Given a set X ⊆ N , we

can consider the remaining marginals, for which no items
were allocated, denoted wX

s where wX
s (j) = mX

s (j + qt(X)).
Similarly to the notation for marginals mX

s , we denote the
concatenaed and sorted remaining marginal lists as wC

s =
(∪i∈Cwi)s. Using this notation, we have the payment of
the proxy of C′, px

C′ , is simply the sum of the first qt(C′)
marginals in (wD ∪ wi ∪ wH)s. Similarly, when i joins the
colluder coalition C′, the payment of the proxy agent for
coalition C′∪{i} is the sum of the first qt(C′∪{i}) = qt(C)+
qt

i marginals in (wD ∪ wH)s. The same analysis for C =
C′ ∪ D and C ∪ {i} shows that px

C is the sum of the first
qt(C) = qt(C) + qt(D) marginals in (wi ∪ wH)s, and that
px

C∪{i} is the sum of the first qt(C∪{i}) = qt(C)+qt(D)+qt
i

marginals in wH
s .

Note wH
s is a vector than can be derived by taking some

elements in (wi ∪wH)s and erasing some elements (those of
wi

s), and replacing them with zero marginals appearing on
the tail. Similarly, (wi ∪ wH)s can be derived by “sparsing
out” (wD ∪wi∪wH)s etc. Given the definitions of the above
payments, we can see that px

C′∪{i}−px
C′ ≥ px

C∪{i}−px
C , as the

right hand side sums marginals for a sparser vector. Since

px
C′∪{i} − px

C′ ≥ px
C∪{i} − px

C we have
∑

i∈C′∪{j} p
C′∪{j}∗
i )−

∑
i∈C′ pC′∗

i ≥∑i∈C∪{j} p
C∪{j}∗
i )−∑i∈C pC∗

i for any agent
j, so the collusion game is convex.

The convexity of the collusion game has several impor-
tant implications regarding the ways in which the coalition
members can share the utility they derive from the collu-
sion. The collusion causes the prices paid to significantly
drop. Item transfers and monetary transfers allow the col-
luders to share the excess utility in any way they desire, and
convexity guarantees there exist stable utility distributions.
Under unstable utility distributions, the colluders’ coalition
is likely to disintegrate due to arguments among the collud-
ers. However, convexity guarantees the colluders could find
a way to distribute the gains so no subset of the colluders
would benefit from leaving the colluders’ coalition.
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The colluders may also want to share the excess utility
in a fair manner, using the Shapley value. A general game
might not even have one stable payoff division, as the core
may be empty. Even if there do exist stable allocations, the
Shapley value may be an unstable allocation. Unfortunately,
in the multi-unit VCG auction, a stable allocation for the
colluders always exists, and the fair allocation is also stable.

Corollary 1. The collusion game always has a non-empty
core, which contains the Shapley value.

Proof. Due to Theorem 3, the collusion game is convex.
As discussed in Section 2, convex games have a non-empty
core, which coincides with the Weber set. The Shapley value
is in the Weber set, and thus lies in the core.

One final barrier that may make it harder to collude is
computational complexity. Although Corollary 1 guarantees
the colluders a fair and stable allocation, it might be hard
to compute. We show that the colluders can always find
a stable allocation in polynomial time. We also show that
when all the marginal functions are identical, except for a
bounded number of agents, the Shapley value can also be
computed in polynomial time.

Theorem 4. Computing an imputation in the core of the
collusion game can be done in polynomial time.

Proof. Given a permutation of the agents π = (i1, . . . , in),
we show the marginal contribution vector mπ(v) (see defi-
nitions in Section 2) can be computed in polynomial time.
Due to Algorithms 1 and 2 we can compute, in polynomial
time, the optimal collusion manipulation for any coalition C,
the VCG payments under the collusion, and the the value
v(C) = u∗(C) of any coalition in the collusion game.

Thus given π we can easily compute the marginal contri-
bution vector mπ

i1 = v({i1}) and mπ
ik

(v) = v({i1, i2, . . . , ik})−
v({i1, i2, . . . , ik−1}) for any k > 1. The Weber set is, by def-
inition, the convex hull of the marginal contribution vectors
mπ(v) (for any π ∈ Π). Thus, any such marginal contribu-
tion vector is in the Weber set.

The core in the collusion game, as a convex game, coin-
cides with the Weber set, so any such marginal contribution
vector is in the core. Thus, we only need to arbitrarily select
a permutation π, compute mπ(v), and the result would be
an imputation in the core.

We note that any permutation π results in a marginal
contribution vector that is in the core. However, there is an
exponential number of such possible vectors, one for each
permutation π ∈ Π.

The Shapley value is the centroid of this exponentially
size set of vectors, so the naive algorithm for computing it
requires exponential time. Consider a multi-unit auction
with agents N , where all of the marginal functions mi are
identical (so mi = m∗), except for a constant number b of
agents, a1, . . . , ab who have a different marginal function.
We call such a domain a b-bounded collusion domain.

Theorem 5. In a b-bounded collusion domain, the Shap-
ley value can be computed in polynomial time, and testing
whether a given imputation is in the core can also be per-
formed in polynomial time.

Proof. We show that for b bounded collusion domains,
there is a polynomially bounded number of different marginal

contribution vectors. In such domains, all agents except
B = {a1, . . . , ab} have the same marginal function (i.e. all
the agents in N \B have the same marginal function). Any
two permutations of the agents that differ only in the or-
dering of the agents in N \ B result in the same marginal
contribution vector. Thus there are only b! n

b
= n!

(n−b)!
=

(n− b + 1) · (n− b + 2) . . . · n ≤ nb different permutations to
consider (we first choose where the non-standard agents are
placed, and then order them within these locations).

Thus there are less than nb distinct marginal contribution
vectors, so all the different marginal contribution vectors can
be computed in polynomial time. Each such“representative”
vector occurs an equal number of times, so averaging all
these vectors gives the Shapley value.

Given an imputation p = (p1, . . . , pn) we can test whether
it is in the core by checking if it is in the convex hull of the
marginal contribution vectors. There are at most nb such
distinct vectors, so we can construct a simple polynomially
sized linear program that tests whether p is in the convex
hull of these vectors. We can test the feasibility of the linear
program in polynomial time, and thus test whether this is a
core imputation in polynomial time.

5. RELATED WORK
Auctions are a commonly used mechanism for selling or

allocating goods. A key problems that such mechanisms face
is that bidders may not bid truthfully. Such bid-shading is
common in many auctions. Under such strategic behavior,
even a mechanism that attempt to maximize social welfare
based on the information it is given may reach a sub-optimal
allocation, as it is given incorrect information. By using a
proper payment rule, it is possible to incetivise the bidders
to truthfully report their valuations. The most prominent
method for achieving this is the VCG mechanism [27, 9,
14]. A detailed introduction to VCG and its properties is
contained in [21].

Despite its advantages, VCG has many shortcomings [1],
including vulnerability to collusion [20]. Collusion and anti-
competitive behavior occur in many domains, and many of
its forms are illegal [20]. Avoiding collusion has been a key
issue in huge auctions, such as the famous FCC auction [10].
A study of collusion in school milk contracts in Florida and
Texas [22] considers first price auctions, and shows that the
cartels can operate either by dividing the market or using
side-payments. Our analysis is also based on side-payments,
and [22] indicates such collusion occurs in practice, and is a
major problem in real-world auctions.

An analysis of bidding rings in weak cartels (without side-
payments) and strong cartels (with side-payments) appears
in [19]. To our knowledge, this is the first paper to study col-
lusion in multi-unit auctions under VCG prices from a coop-
erative game theoretic perspective. Our analysis is based on
solution concepts from cooperative game theory. We have
considered the core and the Shapley value. The core was
introduced in [13] as a solution focusing on stability. The
Shapley value was introduced in [23], and has been used for
distributing the gains of cooperation in a fair manner.

The Shapley value [23] and the similar Banzhaf index [8]
were used to measure power in decision making bodies [25].
They were also used to find the importance of various nodes
and links for high network reliability [7, 6, 2]. Our “opti-
mal collusion” is somewhat similar to merging and splitting
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weights in weighted voting games [4, 3]. The Shapley value
and other power indices are typically hard to compute [17,
18, 11, 12, 7], so our result for computing the Shapley value
in a restricted version of the collusion game is especially
interesting. Even for more general collusion games, the col-
luders can approximate [16, 5, 17] the Shapley value in order
to share their gains.

6. CONCLUSION
We have analyzed collusion in multi-unit auctions under

VCG payments, and shown that such a domain is extremely
valunerable to collusion. The colluders can easily find the
optimal manipulation, and split the gains from the collu-
sion in a stable and fair manner. Our results indicate the
colluders can not only find a stable way to distribute the
gains, they can even use a distribution that fairly allocates
each colluder a share of the utility reflecting her contribu-
tion to the colluders’ utility. Due to Theorem 5, in many
domains the colluders can even use a simple polynomial al-
gorithm to compute this utility distribution. These results
indicate that many factors operate in favour of the collud-
ers in this domain, so significant counter-measures must be
used to stop collusion. We now present several questions
that remain open for future research.

First, we have only examined VCG multi-unit auctions.
Similar analysis can be done for other auctions, such as com-
binatorial auctions or the GSP (Generalized Second Price)
auction common in sponsored search auctions. We believe
collusion can have a strong effects in sponsored seach, with a
significant market impact. Second, We have assumed dimin-
ishing marginal valuations of additional items, and it may
be interesting to analyze domains where this does not hold.
Finally, we have assumed the colluders completely trust each
other. It may be interesting to model situations where the
trust is only partial. For example, colluders may not de-
sire collusion schemes that require item transfers or large
monetary transfers. Such distrust may help stop collusion.
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